

RENNES

BR

Fine and hyperfine excitation of CCS isotopologues induced by collisions with He

 $-1_0, 0.5 \rightarrow 2_1, 0.5$

 $1_{0}0.5 \rightarrow 2_{1},1.5$

13CCS

C¹³CS

80 100

60

E₁₋₁ (cm⁻¹) Figure 8: Hyperfine excitation cross

sections of 13C-based isotopologues.

A. Godard Palluet*, F. Lique*

*Université de Rennes 1, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France

Context

- Physical conditions in astrophysical media are derived from spectral line analysis
- \rightarrow Requires the **population** of molecular energy levels Local thermodynamic equilibrium conditions rarely fulfilled
- \rightarrow Need of **radiative** and **collisional** molecular data Rate coefficients, which characterize transitions induced by collisions, are obtained in 2 steps:
 - 1. Interaction potential between the colliders \rightarrow Potential energy surface (PES)
 - 2. Scattering calculations based on the PES
 - → Inelastic cross sections and rate coefficients

Potential energy surface

- UCCSD(T)/aVQZ level of theory using MOLPRO4
- Legendre polynomial expansion based on 1351 geometries

$CCS(^{3}\Sigma)$ fine structure

Electronic angular momentum S Nuclear rotational momentum N Total angular momentum $\mathbf{i} = N + \mathbf{S}$

1 rotational level N

 \rightarrow 3 fine structure levels N_i

Large spin-splitting \rightarrow Energy levels **mixed up** up to $N_i = 10_i$

Rate coefficients

- Close-coupling approach using a modified version of MOLSCAT5
 - Thermal averaging of the cross sections

from $N_j = 10_j$ for $\Delta N = \Delta j$ transitions

Figure 4: Fine structure resolved rate coefficients from $N_j = 1_j$ for $\Delta N = \Delta j$ transitions.

Fine structure:

- Must be accurately taken into account for low N_i levels
- Could be approximatively taken into account for high N_i

CCS - He collisional system

- CCS detected in several molecular clouds and in IRC+102161,2
- CC34S, 13CCS and C13CS also detected in several astronomical sources
- He is one of the dominant collider and a proxy for H₂

Objectives

- First PES for the CCS-He system
- First accurate fine structure resolved rate coefficients for the CCS and CC³⁴S isotopologues
- First hyperfine structure resolved rate coefficients for the ¹³CCS and C¹³CS isotopologues

Effect of the isotopic substitution

 \rightarrow Rate coefficients for one isotopologues can be use to infer the ones of all 4 isotopologues

Pections -

SS 10

10

Hyperfine structure rate coefficients:

•
$$I = 1/2 \rightarrow F = |j - 1/2|$$
; $j + 1/2$

Nuclear angular momentum I Total angular momentum F = i + I

Recoupling method⁶

Conclusions and Perspectives

- CCS-He PES at the UCCSD(T)/aVQZ level of theory
- First accurate set of rate coefficients for the 5 50 K temperature range
- Isotopic substitution has no significant effect
- Hyperfine structure resolved rate coefficients for ¹³C-based isotopologues
- Modelisation of observation:
 - 1. Observation of CCS
 - 2. Determination of 13C-based isotopologues abundances
 - Investigation of the chemical processes leading to the formation of CCS isotopologues

References

1 H. Suzuki et al, ApJ, (1992), 392, 551-570

² S. Saito et al, ApJ, (1987), 317, L115-L119

³ J. Cernicharo et al, A&A, (1987), 181, L9-L12

4 H.-J. Werner, MOLPRO, a package of ab initio programs, version 2010.1, (2010)

- ⁵ J. Hutson and S. Green, MOLSCAT program, version 14. (1994)
- 6 M. H. Alexander and P. J. Dagdigian, J. Chem. Phys., (1985), 83, 2191-2200

Figure 3: Energy levels of the CCS radical.

1 fine structure level N_i \rightarrow 2 hyperfine structure levels N_{i} , F