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MOTIVATION POTENTIAL ENERGY SURFACE (PES)
| Hydronium (H,0%) has been observed both in dense and diffuse clouds of the ISM [1,2]. It is The PES is calculated in the rigid-rotor approximation (see [8] for details). The explicitly |
_ one of the backbones of interstellar oxygen and water chemistry and also a tracer of cosmic-ray | correlated CCSD(T)-F12 ab initio method is used with the aug-cc-pVTZ basis set applying BSSE |
_ ionization rates. For adequate interpretation of hydronium observations a complex, non-LTE |  correction. 99 000 single-point geometries were computed in total. The PES was developed over |
- analysis is required where both radiative and collisional properties are important. Among the an angular expansion using a standard linear least-square-fit procedure.
~ collisional properties the rate coefficients for collision with H, are the most important. s

. . . . T V(R,0,0,62,¢2) = Vit (R)l tymimy (89,62, 92) 2 W
l The spectroscopy of H;O" is well-studied [3], but its collisional excitation is less-known and | ll,lgz_’Z;nfnlz?mZI’EO,rng R OXYZ | O'x'y'z E
~ limited to: rate coefficients for ortho- and para-H,O" collisions with He (used as a template for | = where dj, ,,m, (6, 0,65, ¢») is the normalized basis function: 0 - com. ofip
* H2) [4] and scaled collisional data based on the interaction of the isoelectronic NH, with H_ [5,6]. _ l , 0’ - com. of H, y
—— — — , —— d3132m1mz(9a¢:92:¢2) — af]lzmlmzdnflslmz(e)dng(BZ)Cos(ml¢ +m2¢'2)

SCATTERING DYNAMICS MODEL AND METHOD | with the normalization factor

Rotational de-excitation cross sections are computed for the collision of ortho- and para- O o = 1 . 1 ((251 +1)(2l2+1))1/ ’

~ H,0* with ortho-H, (up to 1700 cm™ total energies) and para-H, (up to 1500 cm™). For the | 27 (14 81,00m,0) '/ 2

. dynamical calculations we used the coupled-channel (close-coupling) method with the

HIBRIDON scattering code [6]. The corresponding thermal rate coefficients are calculated up to | [0 =0° 0 =90°, ¢ = 0] ¢ vs. Rat [§ =100°, ¢/ = 90°, 6' = 90°7] 1

180 g~

300 K by integrating over a Maxwell-Boltzmann distribution of relative velocities. The lowest 20 |

pure rotational states are taken into account in the case of para-H,0* and the lowest 11 levels 150

90

~ for ortho-H,O" (both with internal energies up to 300 cm™, considering j <5 states).
60 120

i Radiative transfer calculations are performed based on the calculated rate coefficients,
~ using the RADEX non-LTE radiative transfer code [T] |
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The ratios of our recent state-to-state thermal rate

coefficients with respect to the reference data from ol i e i e e
the LAMDA database [7] at 100 K SUMMARY AND CONCLUSIONS
Zae S »An accurate CCSD(T)-F12/AVTZ PES is proposed for the H;O0* + H, collision
A E el . »The calculated cross sections and rate coefficients (< 300 K) are usually larger compared to |
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