

Collisional excitation of CO₂ by He: Scattering calculations on a new potential energy surface

A.Godard*, F. Thibault* and F. Lique*

*Université de Rennes 1, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France

Introduction

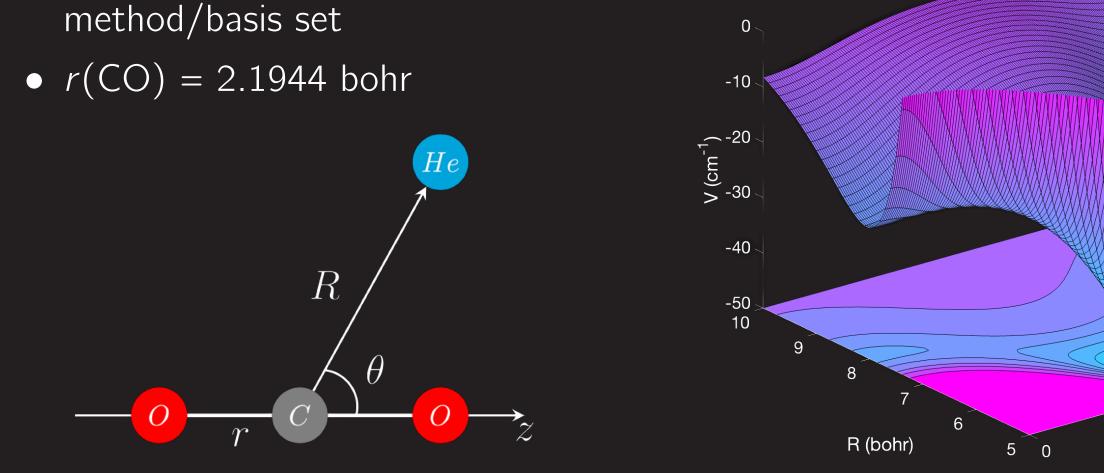
To evaluate CO_2 abudancy in astrophysical media, collisional data are needed. Hence, a new potential energy surface is computed for the CO_2 -He van der Waals complex with a Coupled Clusters method and an extrapolation to the complete basis set. The surface is validated through the comparison of bound states and pressure broadening coefficients with experimental data. Finally, rate coefficients for the 5 - 300 K range of temperature and a study about CO_2 super-rotor in a helium-buffer-gas are provided.

Potential energy surface (PES) Results and discussions CO₂ - He rate coefficients: Computed with CCSD(T)/CBS(T,Q,5) • Maxwellian average of **cross sections**

-10

-20

-30


-40

150

100

θ (°)

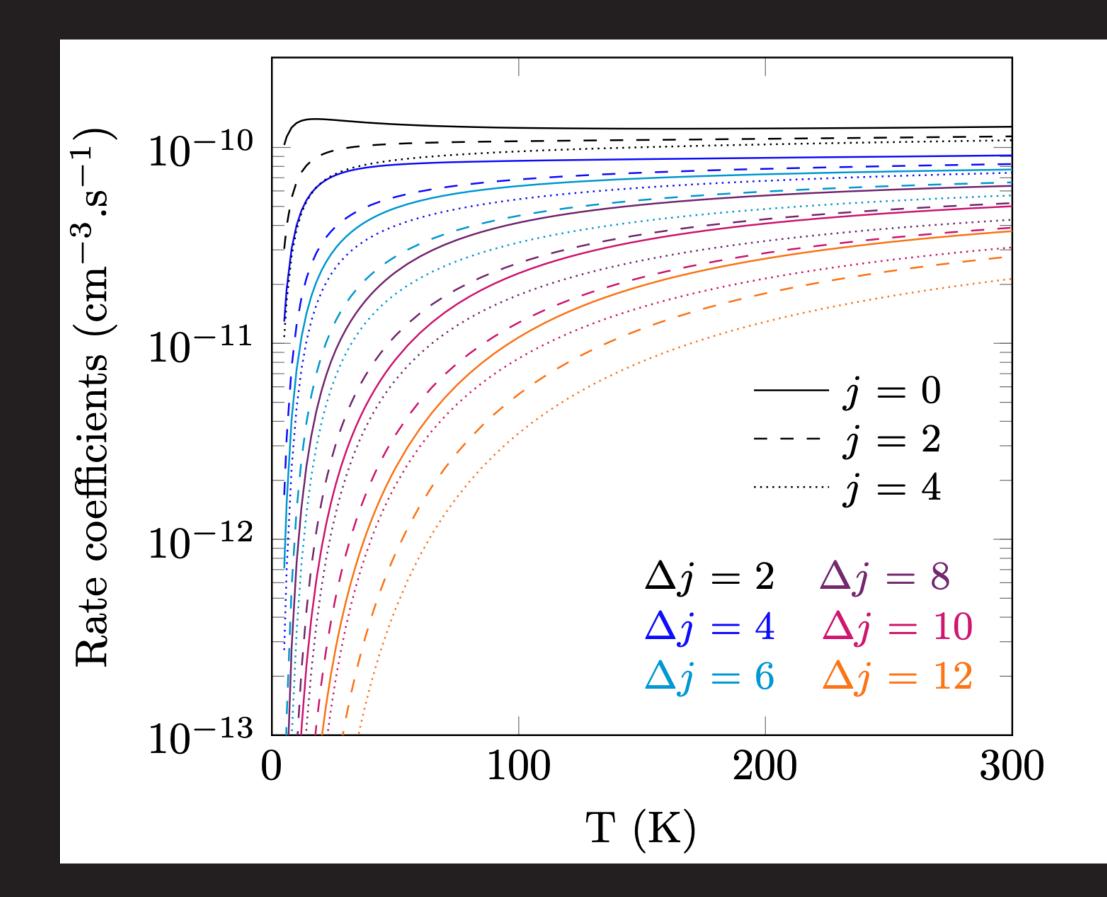

Figure 1: CO₂-He in Jacobi coordinates.

Figure 2: PES of the CO₂-He collisional system.

Reference	Global minimum $\theta = 90^{\circ}$		Local n	ninimum
			θ =	= 0°
	R (bohr)	V (cm $^{-1}$)	R (bohr)	V (cm ⁻¹)
This work	5.78	- 49.22	8.05	- 26.51
Negri et al (1999)	5.86	- 45.98	8.13	- 26.31
Korona et al (2001)	5.81	- 50.38	8.03	- 28.94
Ran & Xie (2008)	5.79	- 49.39	8.06	- 26.70
Li & LeRoy (2008)	5.78	- 49.57	8.06	- 26.69

Table 1: Comparison between present and previous global and local minimas for the CO₂-He van der Waals complex.

• Cross sections computed by a CC approach with MOLSCAT program

Figure 4: Excitation rate coefficients from j = 0, 2, 4 for various Δj as a function of temperature.

- At fixed $\Delta \mathbf{j}$, rate coefficients increases with initial \mathbf{j} and reach an asymptotic value
- When $\Delta \mathbf{j}$ increases, the quenching is decreasing

Validation of the PES

Bound states:

- Close-Coupling (CC) approach with the BOUND program
- Frequencies of the $\Delta \mathbf{0}_{00}$ $\mathbf{1}_{01}$ transition within the ν_0 bound state

	Isotopes	This work	Korona et al [1]	Li & LeRoy [2]	Ran & Xie [3]
$ u$ (cm $^{-1}$)	$^{12}C^{16}O_2$	0.5885	0.592	0.5881	0.589
u (cm ⁻¹) abs. error (%) [4]	$-C - O_2$	0.522	0.072	0.583	0.436
ν (cm ⁻¹)	¹³ C ¹⁶ O ₂	0.5877		0.5873	
abs. error (%) [5]	\mathbf{C} \mathbf{U}_2	0.530		0.590	

Table 2: Frenquencies and absolute error between our calculations and experimental measurements of the $\Delta 0_{00}$ - 1_{01} transition within the ν_0 bound state for ${}^{12}CO_2$ and ${}^{13}CO_2$ isotopes.

 \Rightarrow Validation of the **depth** and **shape** of the potential well

Pressure broadening:

• Lines Lorentzian shaped \rightarrow half width at half maximum (HWHM) γ^0 :

$$\gamma^{0}_{\chi\chi'} = n_{p}\nu \ \overline{\sigma_{\chi\chi'}} = \frac{56.6915}{\sqrt{\mu T}} \overline{\sigma_{\chi\chi'}}$$

 χ , χ' : rovibrational levels involved ; $\nu = (8k_BT/\pi\mu)^{1/2}$; n_p : density of perturbers

Stable CO₂ super-rotor:

- Stable CO₂ rotationally highly excited \rightarrow potential system for inelastic transitions and cold chemistry studies
- Elastic process > rotational quenching at $T_{cryo}(He) \rightarrow$ stable super-rotors

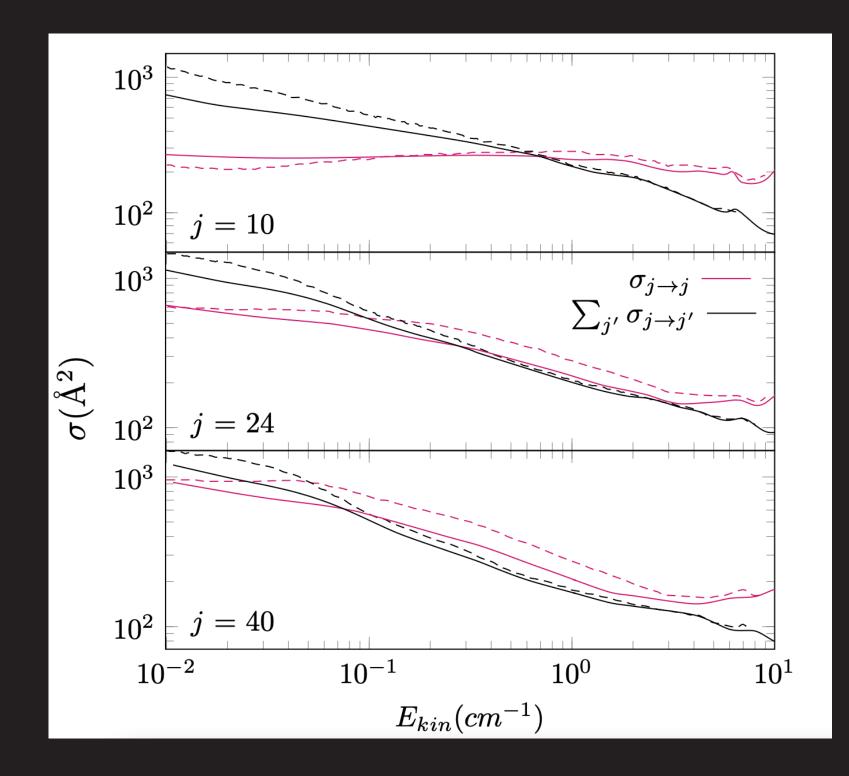
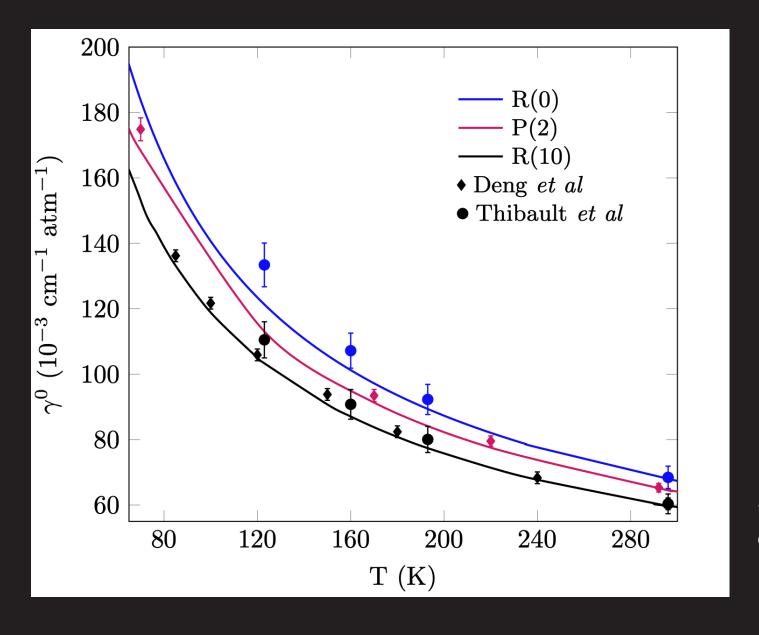



Figure 5: Elastic (magenta) and sum of inelastic (black) cross sections for CO₂ and He collision at j =10, 24, 40 in alQady [8] *et al* (dashed) and our (plain) study.

• Full CC calculations with MOLSCAT

• Transitions between ν_0 and ν_3 vibrational states

Figure 3: HWHM for R(0) (blue), P(2) (magenta) and R(10) (black) in ν_3 from the rore tical (line) and experimental studies of Deng *et al* [6] (\blacklozenge) Thibault *et al* [7] (●).

\Rightarrow Validation of the **repulsive** part of the PES

• Our $\sigma_{i \rightarrow i}$ are **lower**

• Our crossing energies are **higher** $\forall j$

Stability overestimated

- $\Delta V_{glob.min.}$ (PESs) < 1% \rightarrow up to 30% difference on quenching rates
 - \Rightarrow At **low energy**, cross sections are **really sensitive** to the PES

References

[1] T. Korona, R. Moszynski, F. Thibault, JM. Launay, B. [6] W. Deng, D. Mondelain, F. Thibault, C. Camy-Peyret, Bussery-Honvault, P. Wormer, J. Chem. Phys. **115** (2001) A. W. Mantz, J. Mol. Spectrosc. **256** (2009) [2] H. Li & R. LeRoy, Phys. Chem. Chem. Phys. 28 [7] F. Thibault, B. Calil, J. Boissoles, JM. Launay, Phys. Chem. Chem. Phys. 2 (2000) (2008)[8] W. H. al-Qady, R. C. Forrey, B. H. Yang, P. C. Stancil, [3] H. Ran & D. Xie, J. Chem. Phys. **128** (2008) [4] Y. Xu & W. Jäger, J. Mol. Struc. **599** (2001) N. Balakrishnan, Phys. Rev. A 84 (2011) [5] A. R. W. McKellar, J. Chem. Phys. 11 (2008)